Reassessment of
Java Code Management

Random Thoughts

Andrey Petrov
January 8,2010

Principal Issues

® Customization of favorite IDEs.
® [ack of common project templates.

® Guessing the purpose, scope, dependencies, and
build nuances of existing units of code.

® Deployment over a network share.
® Volume of Webstart downloads.
® All-at-once builds.

® |ack of a staging (test) environment.
e Stupid CVS.

Friday, January 8, 2010

Code Infrastructure

How It Works Now

Developer User

Production l | Application Index

Source
U Yr Libraries

Y Built Artifacts
Y Meta-Info

CVS

Builder

Friday, January 8, 2010

What's Wrong

® Multiple sources of meta-information.

= Build procedures are not portable.

® 3-party libraries are duplicated in CVS and in the
production repository.

® Can we combine the source code repository and
the production repository?

5

Friday, January 8, 2010

How It Works Now

Developer User

Production l | Application Index

Source
SRR Yr Libraries

Y Built Artifacts
Y Meta-Info

CVS

Builder

Friday, January 8, 2010

What’s Desired

Developer User

VCS Production
Source
.................... Y Libraries
Y Built Artifacts
Y Meta-Info
Builder

Friday, January 8, 2010

Run-Time Testing

Developer User

Staging

Source
Yr Libraries
Y Built Artifacts
Y Meta-Info

8

Friday, January 8, 2010

VWebstart

How |t Works Now

® |NLP file is generated dynamically according to
information from the Application Index.

- Among other things, it lists the names of
required libraries.

® For every library, the client checks whether it is
already cached, and whether a newer version is
available on the server.

® The missing and newer libraries are downloaded
and cached.

® The application is launched.

Friday, January 8, 2010

What's Wrong

® Slow.

® Application libraries are coarse-grained.

® [ack of version attributes on individual libraries.
= Many jars don’t change between releases.

- Have to check time stamps to distinguish
different versions of a jar.

® |NLP file is not bound to a particular application
version.

Friday, January 8, 2010

What'’s Desired

® Automatically created jars for every application.
® Elaborated versioning scheme for libraries.
® Background download of libraries.

- The application starts immediately if a previous
version is available in the cache.

® Pre-load of the system cache on public consoles.

® Generation of JNLP files by the building system.

Friday, January 8, 2010

Why We Can’t Use
Incremental Download

® Download and verification of 25M’s gov.jar takes...
- whole file: 9.5s.

= minuscule patch: 20 s.

Friday, January 8, 2010

Development
Environment

What's Wrong

® Customization of favorite IDEs.
- Eclipse excluded.
® [ack of common project templates.

® Guessing the purpose, scope, dependencies, and
build nuances of existing units of code.

® Deployment over a network share.

|5

Friday, January 8, 2010

What'’s Desired

® Splitting the source code into smaller parts.

® Describing what every part is, and how it can be
used: checked out, compiled, packaged, and run.

= In a machine-readable format!
® Keeping the descriptions along with the code.
® Using a common code management client,

= Multi-platform.

- Command-line and integration with IDEs.

® Always using local copies of external libraries.

|6

Friday, January 8, 2010

Development Lifecycle

A
X
I Create a new empty Check out an existing 5
application from a template. application form VCS. <
>
\ 4
1 Edit Clean Build Test
T
I” Submit built artifacts to the Commit source code and
staging environment. meta-info to VCS.
>_
ooo (e
9
Buildin .
; C
|V Testing
Server Deployment to production |
Client
17

Friday, January 8, 2010

Building System

What's Wrong

® Not portable.

® Have to rebuild the full code base all the time.
- Release is huge, difference is tiny.

® [ack of staging environment.

® Beta builds make no sense.

® Difficult to handle custom building procedures,
native libraries.

® Can we compile less and unit-test more!

® Wizardry of dependency management.

19

Friday, January 8, 2010

CVS lIssues

® Slow.
® Awkward interface and unexpected results.
® [ack of reliable historical data and reports.

® | ack of a secure connection.

20

Friday, January 8, 2010

Practical Steps

pA

The Plan

|. Physically split the gov tree into a fresh repository
and annotate the new modules. No refactoring
unless absolutely necessary.

Develop the development building environment.
Develop and set up the central building system.
Update Application Index.

. Set up a [new!] version control system.

o U A W

. Set up new production and staging repositories.

22

Friday, January 8, 2010

Code Modules

® Can be checked out and built independently.
® An atomic module is an application or a library.
® Don’t have to follow package boundaries.

- However, each file from the gov tree goes to
exactly one module.

® Use a standard directory layout:
= main source, test source, resources, meta-info.
® Get built into one or several deployment units:

- jar and war archives, jnip files, ...

23

Friday, January 8, 2010

Module Hierarchy

the uber-module

core

dae db kerberos synoptic autotune errors

low-level modules

24

Friday, January 8, 2010

Module Meta-Information

® Describes what the module is:
= unique identifier,
= version,
- external dependencies,
- location in a source control repository,
- variations to the building procedure,
- author, keeper, etc.
® Can be inherited from a top-level descriptor.

® Supersedes Application Index.

25
Friday, January 8, 2010

Building System

® Apache Maven.

= Strong similarities with Common Build.
® Unrelated to Ant.

= “What to do” (Maven) vs.”"How to do” (Ant).
® Rich set of defaults based on best practices.

- Customizable.

® Support command-line interface and integration
with common |IDEs. Platform-independent.

® Comprehensive open-source repositories.

26

Maven Command Line

® Creating an empty project:

mvn archetype:create
-DgroupId=gov.fnal.controls
-DartefactId=example
-DpackageName=gov.fnal.controls.example

® Compile a project:
mvn complle:compile

® Build a project and deploy in the local repository:

mvn install

27

Friday, January 8, 2010

Maven Repositories

Working copies Local
]
* Proprietary code
Enterprise — Slgned libraries
T e Maven customization

WVell-categorized
open source

Global

28

Friday, January 8, 2010

Standard Directory Layout

src/
main/
java/
resources/
webapp/
test/
java/
resources/
target/

pom.xml

29

Friday, January 8, 2010

Project Object Model (POM)

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>gov.fnal.controls</groupId>
<artifactId>parameter-page</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Parameter Page</name>
<url>http://www-bd.fnal.gov</url>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

30

Friday, January 8, 2010

http://www-bd.fnal.gov
http://www-bd.fnal.gov

Version Control System

® Subversion! Git!
® A nice opportunity to switch.
® [nteroperability with CVS is desired.

® The system have to remain usable for a long time.

31

Friday, January 8, 2010

Considerations on Migration

® The build product should be binary compatible.
= Actual jars will be different.

® Don’t have to switch all at once.
= One module at a time!
= Maintain two repository, synchronize regularly?

- Keep the CVS repository, start new project in
the new repository?

32

Friday, January 8, 2010

